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!#The “literature concerning = the extension 'of 'vector 'measures'is very
C\tensne the most significant'tesults known until-now being those presented
in [1], [2], [3], [4]. [6], [7], [10], [11].

The aim, of our paper is to. prove that the, s-bounded measures-defined
on a Boolean algebra @ can be extended simultaneously to any Boolean al-
gebra @D e. More precisely, we show that for each’Banach space E and
for each finite additive measure p: @ — R, therc exists a linear map-
ping which associates to each s- boundcd measure m: Q—>E m< p.'@

an s-bounded measure m €@ — E such that m|@ = m and m < p. It was.
remarked in [2] that the Lebesgue measure on [0, 1]} cannot be extended
as a c-additive measure, to. the o-algebra of: all subsets of [0, 1] and thus
our result is the best possxble .

The key. point in our proof is-the use. of. the geometrlc properties of
AM and AL-spaces (in_ the sense of Kakutani) and Dinculeany’s approach
on vector measures as continuous linear mappings on the vector space of
all totally measurable bounded functions.

Our main result  unables us 'to preve:inia unifying manner previous
theorems on extension of vector measures such as Dinculeanu’s; Kluvanek’s, étc

1. REVIEW ON VECTOR.  MEASURES

First recall the construction of the Banach lattice /(@) of all ,bounded
real functions* for @ a Boolean algebra, For, consider the set of all elements

of the form X «;A; where
icF

Ay €@, A, # 0, inf (Ay Ay)= 0 for it :
sup {Ai; i = F} = T,  F 'is an "arbitrary 'finite set’ and M ois'  the
greatest: element of @."Say X ayd; ~ X B,;B; iff inf(A; B;) %0 implies
g “ N ; = JcF _x i%jec =
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a; = B;. The set &(@) of all classes of equivalence as obtained can be endowed
with a structure of normed lattice as follows :

P NN e e
N PN
}ZaiAi = Z;\aiAi’ re R

S
Za;A; > 0 if, and only if, all «; are positive

AN
[|[Ea;Aql| = suplal.

Then _M(@) can be defined as the topological completion of &(€). Cle-
arly (@) is an AM-space with unit (in the sense of Kakutani) and the
classical result (due 'to M.H. Stone) concerning the concrete representation
of 1 Boolean algebras yieldsi that (@) is lattice isometric to C(S), for S
the spectrum of €.

For E a sequentially complete locally convex space and € a Boolean
algebra'we shall denote by Mes;(€) the vector space of all (finitely ad-
ditive) measures m: @ E such that

sup g(m(A)) < oo
Aeg

for each: continuous semi-norm q on-E.

A measure m € Mes;(€) is called s-bounded if for every sequence of
pairwise disjoint elements A, € € we have lim m(A,) = 0. The vector
subspace of all s-bounded measures m € Mes;(€) will be denoted by M z(€).

“'Given a' positive measure yu € Mg(€), we shall denote by My(@, ()
the vector subspace of all m & Mg(@) such that m € u i.e., lim m(A) = 0.
w(A)-0
The following result which establishes an equivalence between ope-
rators. and measures goes back to Dinculeanu {5] :

1.1. Theorem. There exists a natural algebraic isomorphism.
Do, p+ Mesz(€) - L(M(€), E)
given by :
o De, s(m)(y.4) = m(A)
for every A € @. Here y, denoles the class of 1+ A + 0-AL "where Al is
the unique element of @ such that sup (A, AL) =T and inf (A, Al)=0.
The above isomorphism can be precised .as follows :
I) If E is an ordered locally convex space then ®p, y is order preserving.

11) (J. Hoffmann-Jorgensen [9]). By the isomorphism @, p the weakly

Compact operators of L(M(@), E) correspond precisely to the s-bounded measures
of Mesg(@).
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IIT) (C. Niculescu [15]) If . : € — R is a posilive measure then m € Mg(@,
w) iff @, g(m) is absolutely conlinuous with respect to p i.e.,

| ®e, (m)(NI| < ellfl] + 8(e)fIf du
for every f = M(€) and every e > 0. Here
fh dp = Do,r (W)(h).

Sketch of the proof. The mon trivial assertions are II) and II).

II). Let us denote by S the spectrum of €. Then § is a compact
Hausdorff space and @ is isomorphic to the Boolean algebra of all clopen
subsets of S, which implies that (€) is lattice isometric to C(S). Notice
also that every open F, subset of S is of the form D = U K, for {Ku}a
a suitable increasing sequence of clopen subsets of S. By Lebesgue’s theorem
on dominated convergence it follows that yg, —> yp in the o(C(S)**, C(S5)*)
topology of C(S)**.

Let m € My(@). Then Dp, x(m)(xx,) = m(K,) is a converging sequence
and thus ®p, z(m)++(xp) = m(D) € E. By Theorem 6 in [8] we obtain that
®Qp, g(m) is weakly compact as an operator defined on C(S).

Conversely, if ®p, z(m) is weakly compact and {A,}s is a sequence
of pairwise disjoint elements of @ then y4,(s)— 0 for all s € S and The-
orem 6 in [8[ yields that the sequence ®p, g(mM)(xan) = m(A,) is norm con-
verging to 0, q.e.d. )

111) Let m € Mg(@, p). By (II), the set X = {a%> Dp, x(m) ; x* € E*,
[lz*]| < 1} is weakly relatively compact and the ‘classical criterion (due
to Dunford and Pettits) of weak compactness in a space L,(}) yields the
same for |X| = {|v|; v € X}. It is convenient here to identify (@) with
C(S), where S denotes the spectrum of €, and to regard the functionals on
(@) as Radon measures on S. We shall prove the following estimate :

(*) sup [ Ifldv < ellfll + 3(e) § Ifldw, £=C(S).
velX|

which implies III).
Indeed, if (x) fails, then there exist a positive €, a sequence 0<f.<1
in C(S) and a sequence v, € |X| such that

[ fadp < 2777" and | frdv, > ¢
for all n > 1. Put:
hu(s) = sup {fa(s) ; k > n}
h(s) = inf {h,(s); n > 1}
Then h, and h are Borel measurable functions and Theorem 2 in [8] im-
plies that
lim { h,dv, ='{ hdyv,,

n-~o
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uniformly fork > 1.

Since v, < pand’ [ hdu = 0, we have [ hdv, = 0 (keN) in contradiction
with the fact that [ h,dv, > e (neN) and thus the estimate (+) holds. The
remainder of the proof is now clear.

2. SIMULTANEOUS EXTENSIONS OF S-BOUNDED MEASURES

“iTet @ C @ two Boolean algebras.
“192.1) "Theorem.. = ] 3
I) If E is a'sequentially complele 'locally convex "space’ then theére' exists
alinear mapping e : M (@) — M ,(€) such thal e(m)|@ = m for every mé:]\lIE‘(@).
1) If E . is a;Banach space and p: € — R is a. posilive measure then
there exists a lincar mapping e : M@, 1|€) — M (@, ) such that e(m)|@ = m
for every m .= My@, 11@). . . , (). )
In_both cases if E is an ordered locally, convex space, e can be chosen
lo be positive.,, : :
Proof. Since M(@) is lattice isometric to a space C(S), for S the spec-
triim 'of @, ‘the Banach' lattice” _/(€) has the ‘éxtension property and thus
there ‘exists a norm-1'positive projection’ P : Jl(€)** -3 J(@)**. See [12],

<

page '81. By' using"II) and III) in Theoreém 1.1"above it follows that e can
be defined by ) ) G

Jo(m) = 1Dg 5Dy r(m) 1P| ME@)) 1 o
qee.d. or w1l &

"~ We have a unique extension if, @ is, the Boolean c-algebra generated
by @. This fact may be deduced from [10] but we prefer here a direct
argument. vh !} i :

2.2. Proposition. Each m M (@) can be exlended uniquely lo the Boo-
lean o-algebra T generated by @, as an s-bounded measure: In, other words
the canonical restriction r: M, T) v My(@) is an isomorphism. whose inverse
is e. . ¥ ARtk 0
Proof. If S denotes the spectrum of @ then (@) is lattice isometric
to C(5) and ®p, z(m) can be regarded as a weakly 'compact operator defined

on C(S). See Theorem 1.1 above. The operator ®¢, j(m) has a unique
weakly compact extension to _fi(@)** = C(S)**, particularly to _#(B(S)),
where (B(S) denotes the Borel c-algebra ‘associated to S. By Stone’s repre-
sentation theorem @ is isomorphic to the Boolean algebra @ of all clopen
subsets of S. Clearly @ (C B(S) and thus m has a unique s-bounded ex-
tension to ‘B(S)  (use Theorem!'1:1!(II) above) and a fortiori to the Boo-
lean c-algebra generated by @, q.e.d. sl ) eaile
2.3. Corollary (see [10], . Every o-addilive measure m € My(@) has a
unique c-additive exlension to the Booléan s-algebra T generaled by @.
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© ' Proof.- By Proposition 2.2 above m has a unique extension' meM z('T).
Then z*om is the unique s-bounded extension of x*em to T Whenever
2% e E*, A well known result due to Hahn (see {14], page 136) asserts that
every c-additive measure A : € — R has.a unique g-additive extension te "C-
Every c-additive measure given on a Boolean o-algebra is s-bounded and
thus m is weakly c-additive. It remains to apply a classical result due to
Orlicz and Pettis in order to obtain the c-additivity: of m, q.e.d.

2.4. Remark. If E: is a.:Banach.space which contains no:isomorphic
copy of ¢, then Mesy(@) = My(@) for every Boolean algebra @. This well
known fact can be deduced from [8] by using Theorem 1.1 ahove,

4
it

" 5. SIMULTANEOUS, EXTENSIONS 'OF MAJORIZED MEASURES

1

For ;I: © - R a positive measure and E a Eanach space we shall
denote by My(p) the vector space of all m & Mg(p) such that

_sup [m(A)||/i(A) < o
u(A4)#0

If e C @ is another Boolean algebra then there is defined a linear
mapping B

5 ]\4E(P~’~)_> AIE(Q']@)

given by 'the restiiction of every m 's My(€) to €.

- 3.1. Theorem. There egists a linear mapping

R e My(n1@) > Ma()

such that ro¢ is the identily of My(u]@). , ~

. As, follows. from Proposition 2.2 above, e is an isomorphism, if @ s
the Boolean g-algebra generated by €. . 0

v Proof: We first describée a canonical method" to construct AL’ spaces
in the sense of Kakutani. Let X be a normed lattice i.e., {x| < |y| implies
[lz]] < 1|y|[. Each o* & X*, x* > 0, defines on X a relation of equivalence
as follows : e ‘ h
B . x.~ y if, and only if x*(x—yl) =0
The ‘¢ompletion” 6f X/~ "With respect to the norm "

o e = 2*(la)

is an AL — space, say Ll(x*‘).; ‘

~ We 'shalt''denote ' by ‘Ll(fJ,)N (respectively ~L1(p,)) th‘e': space ALl(x*)i con-
structed as above for X =&(@) and a* = u (respectively for X = &(€

1Y BT i i1 !

and z* = p|@). Then L,(p) can be identified :as a. closed sublattice of
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Ll(ﬁ) and the Lebesgue-Nikodym theorem easily yields the existence of a
norm-1 positive projection P : L(x) — Ly().

Notice also that for each m € My(1|€) the operator ®o, (m) has
a unique extension T, € 2(L,(1n), E). Then e can be defined as follows :

e(m) = ®&™,; (T - P|_M(©))

for every m = ME(;I|@), q.e.d.
3.2. Corollary. Lef yn: € —> R a positive measure and let m & Mg(u).

For every Boolean algebra € D) @ there exisls an exlension m: € - E of
m of finite variation.

Proof. By Theorem 2.1 above p has a positive extension ;I to €.
3.3. Corollary (see [1]). Suppose in addilion that @ is the Boolean

c-algebra generated by € and u is o-addilive. Then m is a o-addilive me-
asure that extends m uniquely.
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